Lecture 8

Andrei Antonenko

February 19, 2003

1 Matrix equations and the inverse

1.1 Discussion of the algorithm - Part 2

Last time we proved the following result:

Lemma 1.1. 1. If the square matrix A is invertible, then its RREF is the identity matrix.

2. If we can reduce the matrix A by elementary row operations to the identity matrix, i.e. if its RREF is identity matrix, then this algorithm gives us $A^{-1}B$ in the right half of the augmented matrix.

Actually, the opposite assertion of this lemma is also true.

Lemma 1.2. Let RREF of a square matrix A be the identity matrix. Then A is invertible.

Proof. Let's consider the process of reducing A to it's RREF. It can be done by elementary row operations with matrices E_1, E_2, \ldots, E_s , i.e. $(E_s E_{s-1} \cdots E_1)A = I$. From this equality we see that the product of matrices $E_s E_{s-1} \cdots E_1$ satisfy the definition of the inverse for A. \Box

So, from these 2 lemmas we get the interesting result, which is the main result about invertible matrices so far:

Theorem 1.3. The matrix A is invertible if and only if its RREF is the identity matrix.

2 Vector spaces

In this lecture we will introduce a new algebraic structure which is one of the most important structure in linear algebra. This would be a set with 2 operations — addition of its elements and multiplication of numbers by its elements.

Definition 2.1. Let $\&$ be any field. We didn't study fields so far, so those who are not familiar with them can just treat the letter \Bbbk as another notation for $\Bbb R$. A set V is called **vector space** if there defined an operation of addition of elements of V such that $\forall v, w \in V$ $v + w \in V$, and an operation of multiplication of elements of $\mathbb R$ by elements of V (often called **scalar multiplication**) such that $\forall k \in \mathbb{R}$ $\forall v \in V$ kv $\in V$, and the following axioms are satisfied: Axioms of addition:

- $(A1) \ \forall v, u \in V \ v + u = u + v$
- (A2) $\forall v, u, w \in V$ $v + (u + w) = (v + u) + w$
- $(A3) \exists 0 \in V \text{ such that } v + 0 = v$
- (A4) $\forall v \in V \exists (-v) \in V \text{ such that } v + (-v) = 0$

Axioms of multiplication:

- (M1) $\forall a \in \mathbb{R} \ \forall u, v \in V \ a(u+v) = au + av$
- (M2) $\forall a, b \in \mathbb{R} \ \forall v \in V \ (a+b)v = av + bv$
- (M3) $\forall a, b \in \mathbb{R} \ \forall v \in V \ a(bv) = (ab)v$
- (M4) $\forall u \in V$ 1 $u = u$

Elements of the vector space are called **vectors**.

Now we'll give a number of examples of a vector spaces.

Example 2.2 (Space \mathbb{R}^n). Let V be a set of n-tuples of elements of \mathbb{R} . We can define operations as follows:

Addition: $(a_1, a_2, \ldots, a_n) + (b_1, b_2, \ldots, b_n) = (a_1 + b_1, a_2 + b_2, \ldots, a_n + b_n)$

Scalar multiplication: $k(a_1, a_2, \ldots, a_n) = (ka_1, ka_2, \ldots, ka_n).$

The zero vector is $\mathbf{0} = (0, 0, \ldots, 0)$ and the negative vector is $-(a_1, a_2, \ldots, a_n) = (-a_1, -a_2, \ldots, -a_n)$.

Example 2.3 (Space $P(t)$). Let V be a set of all polynomials of the form

$$
p(t) = a_0 + a_1t + a_2t^2 + \dots + a_st^s, \quad s \in \mathbb{N}.
$$

We can define operations as follows:

Addition: Usual addition of polynomials.

Scalar multiplication: *Multiplication* of a polynomial by a number.

The zero vector is $\mathbf{0} = 0$.

Example 2.4 (Space $P_n(t)$). Let V be a set of all polynomials with degree less or equal to n of the form

$$
p(t) = a_0 + a_1t + a_2t^2 + \dots + a_st^s, \quad s \in \mathbb{N}, \quad s \le n,
$$

We can define operations as follows:

Addition: Usual addition of polynomials.

Scalar multiplication: *Multiplication* of a polynomial by a number.

The zero vector is $\mathbf{0} = 0$.

Example 2.5 (Space $M_{m,n}$). Let V be a set of all $m \times n$ -matrices. We can define operations as follows:

Addition: Usual addition of matrices.

Scalar multiplication: *Multiplication* of a matrix by a number.

The zero vector is a matrix with all entries equal to 0.

Example 2.6 (Space $F(X)$). Let V be a set of all functions from X to R. We can define operations as follows:

Addition: Usual addition of functions: $(f+g)(x) = f(x) + g(x) \,\forall x \in X$.

Scalar multiplication: Multiplication of a function by a number: $(kf)(x) = kf(x) \,\forall x \in X$.

The zero vector is a function $f(x) = 0 \forall x \in X$. The negative function is a function $(-f)(x) =$ $-f(x) \,\forall x \in X.$

And now we'll give an example of a set which is not a vector space.

Example 2.7. Let's consider the polynomials of degree 10, i.e. set of functions $f(t)$ such that

$$
f(t) = a_0 + a_1t + a_2t^2 + \cdots + a_{10}t^{10}.
$$

Which axioms of a vector space does not hold here? First of all, this set doesn't have a zero element, since zero polynomial's degree is $0 - not 10$. Moreover, we're not always able even to add polynomials, i.e. let's consider $f(t) = t^{10}$, and $g(t) = t^9 - t^{10}$. Degree of $f(t)$ and $g(t)$ are 10, but if we add them we'll get: $f(t) + g(t) = t^{10} + t^9 - t^{10} = t^9$ — and degree of the result is 9, not 10. So, a set of polynomials of degree 10 is not a vector space.

We can give some properties of vector spaces:

- If $u + w = v + w$ then $u = v$.
- $\forall k \in \mathbb{R}$ $k0 = 0$.

Proof. $k\mathbf{0} = k(\mathbf{0} + \mathbf{0}) = k\mathbf{0} + k\mathbf{0}$, and so by the first property $\mathbf{0} = l\mathbf{0}$. \Box

• $\forall u \in V$ $0u = 0$.

 \Box *Proof.* $0u = (0+0)u = 0u + 0u$, and so by the first property $\mathbf{0} = 0u$.

• If $k \neq 0$ and $ku = 0$ then $u = 0$.

Proof.
$$
u = 1u = (k^{-1}k)u = k^{-1}(ku) = k^{-1}\mathbf{0} = \mathbf{0}.
$$

• $\forall k \in \mathbb{R} \text{ and } u \in V \quad (-k)u = k(-u).$

Proof. $\mathbf{0} = k\mathbf{0} = k(u + (-u)) = ku + k(-u)$, and $\mathbf{0} = 0u = (k + (-k))u = ku + (-k)u$. So, $k(-u) = (-k)u$. \Box

3 Subspaces

Definition 3.1. Let V be a vector space. The subset $W \subset V$ is called a **subspace** of V if W itself is a vector space.

To check that W is a subspace we need to check the following properties:

- 1. $\mathbf{0} \in W$
- 2. $\forall v, w \in W \quad v + w \in W$
- 3. $\forall k \in \mathbb{R} \ \forall u \in W \ ku \in W$

Example 3.2. Consider a vector space \mathbb{R}^2 . Then its subset $W = \{(0, y) | y \in \mathbb{R}\}$ — set of pairs for which the first element equals to 0, is a subspace.

We can prove it. First of all, $(0,0) \in W$, since first element of it is 0. Moreover, let $u = (0, a) \in W$, $v = (0, b) \in W$. Then their sum $u + v = (0, a + b) \in W$ since it has zero on the first place. Now let's multiply any vector $u = (0, a) \in W$ by any number k: $ku = (0, ka)$, and it belongs to W , since it has θ on the first place. So, this is a subspace.

Example 3.3. Consider a vector space \mathbb{R}^2 . Then its subset $W = \{(1, y) | y \in \mathbb{R}\}$ — set of pairs for which the first element equals to 1, is NOT a subspace.

Here the first property is not satisfied $-$ (0,0) doesn't belong to W. Other properties are not satisfied as well: $(1, a) \in W$, $(1, b) \in W$, but their sum $(2, a+b) \notin W$, since it has 2 on the first place.

Example 3.4. Consider a vector space \mathbb{R}^2 . Then its subset $W = \{(x, y)|x, y \in \mathbb{R}, x = y\}$ set of pairs for which the first element is equal to the second element (geometrically, it is a line on the plane), is a subspace.

Let's check it. First of all, if $\mathbf{a} = (a, a) \in W$, and $\mathbf{b} = (b, b) \in W$ then $\mathbf{a} + \mathbf{b} = (a+b, a+b) \in W$ W. Than, $(0,0) \in W$. Moreover, for each $k \in \mathbb{R}$ we have $k(a,a) = (ka, ka) \in W$. So, this is a subspace.

One can prove that any line on the plane \mathbb{R}^2 which goes through the origin is a subspace. Moreover, any plane in the space \mathbb{R}^3 which contains the origin $(0,0,0)$ is a subspace.

Example 3.5. Consider a vector space \mathbb{R}^2 . Then its subset $W = \{(x, x^2) | x \in \mathbb{R}\}$ — set of pairs for which the second element is equal to the square of the first element is NOT a subspace.

Let's prove it. First of all, if $(0,0) = (0,0^2) \in W$. Now let's consider 2 elements of this $set - (1, 1) \in W$ and $(2, 4) \in W$. Their sum $(3, 5)$ doesn't belong to W, since $5 \neq 3^2$. So, we showed that there are two elements sum of which doesn't belong to the set. So, this is not a vector space.