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1 Matrix equations and the inverse

1.1 Discussion of the algorithm - Part 2

Last time we proved the following result:

Lemma 1.1. 1. If the square matrix A is invertible, then its RREF is the identity matrix.

2. If we can reduce the matrix A by elementary row operations to the identity matrix, i.e.

if its RREF is identity matrix, then this algorithm gives us A−1B in the right half of the

augmented matrix.

Actually, the opposite assertion of this lemma is also true.

Lemma 1.2. Let RREF of a square matrix A be the identity matrix. Then A is invertible.

Proof. Let’s consider the process of reducing A to it’s RREF. It can be done by elementary

row operations with matrices E1, E2, . . . , Es, i.e. (EsEs−1 · · ·E1)A = I. From this equality we

see that the product of matrices EsEs−1 · · ·E1 satisfy the definition of the inverse for A.

So, from these 2 lemmas we get the interesting result, which is the main result about

invertible matrices so far:

Theorem 1.3. The matrix A is invertible if and only if its RREF is the identity matrix.

2 Vector spaces

In this lecture we will introduce a new algebraic structure which is one of the most important

structure in linear algebra. This would be a set with 2 operations — addition of its elements

and multiplication of numbers by its elements.
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Definition 2.1. Let k be any field. We didn’t study fields so far, so those who are not familiar

with them can just treat the letter k as another notation for R. A set V is called vector space

if there defined an operation of addition of elements of V such that ∀v, w ∈ V v + w ∈ V ,

and an operation of multiplication of elements of k by elements of V (often called scalar

multiplication) such that ∀k ∈ k ∀v ∈ V kv ∈ V , and the following axioms are satisfied:

Axioms of addition:

(A1) ∀v, u ∈ V v + u = u + v

(A2) ∀v, u, w ∈ V v + (u + w) = (v + u) + w

(A3) ∃0 ∈ V such that v + 0 = v

(A4) ∀v ∈ V ∃(−v) ∈ V such that v + (−v) = 0

Axioms of multiplication:

(M1) ∀a ∈ k ∀u, v ∈ V a(u + v) = au + av

(M2) ∀a, b ∈ k ∀v ∈ V (a + b)v = av + bv

(M3) ∀a, b ∈ k ∀v ∈ V a(bv) = (ab)v

(M4) ∀u ∈ V 1u = u

Elements of the vector space are called vectors.

Now we’ll give a number of examples of a vector spaces.

Example 2.2 (Space Rn). Let V be a set of n-tuples of elements of R. We can define

operations as follows:

Addition: (a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn)

Scalar multiplication: k(a1, a2, . . . , an) = (ka1, ka2, . . . , kan).

The zero vector is 0 = (0, 0, . . . , 0) and the negative vector is −(a1, a2, . . . , an) = (−a1,−a2, . . . ,−an).

Example 2.3 (Space P (t)). Let V be a set of all polynomials of the form

p(t) = a0 + a1t + a2t
2 + · · ·+ ast

s, s ∈ N.

We can define operations as follows:

Addition: Usual addition of polynomials.

Scalar multiplication: Multiplication of a polynomial by a number.
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The zero vector is 0 = 0.

Example 2.4 (Space Pn(t)). Let V be a set of all polynomials with degree less or equal to n

of the form

p(t) = a0 + a1t + a2t
2 + · · ·+ ast

s, s ∈ N, s ≤ n,

We can define operations as follows:

Addition: Usual addition of polynomials.

Scalar multiplication: Multiplication of a polynomial by a number.

The zero vector is 0 = 0.

Example 2.5 (Space Mm,n). Let V be a set of all m× n-matrices. We can define operations

as follows:

Addition: Usual addition of matrices.

Scalar multiplication: Multiplication of a matrix by a number.

The zero vector is a matrix with all entries equal to 0.

Example 2.6 (Space F (X)). Let V be a set of all functions from X to R. We can define

operations as follows:

Addition: Usual addition of functions: (f + g)(x) = f(x) + g(x) ∀x ∈ X.

Scalar multiplication: Multiplication of a function by a number: (kf)(x) = kf(x) ∀x ∈ X.

The zero vector is a function f(x) = 0 ∀x ∈ X. The negative function is a function (−f)(x) =

−f(x) ∀x ∈ X.

And now we’ll give an example of a set which is not a vector space.

Example 2.7. Let’s consider the polynomials of degree 10, i.e. set of functions f(t) such that

f(t) = a0 + a1t + a2t
2 + · · ·+ a10t

10.

Which axioms of a vector space does not hold here? First of all, this set doesn’t have a zero

element, since zero polynomial’s degree is 0 — not 10. Moreover, we’re not always able even

to add polynomials, i.e. let’s consider f(t) = t10, and g(t) = t9 − t10. Degree of f(t) and g(t)

are 10, but if we add them we’ll get: f(t) + g(t) = t10 + t9− t10 = t9 — and degree of the result

is 9, not 10. So, a set of polynomials of degree 10 is not a vector space.

We can give some properties of vector spaces:
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• If u + w = v + w then u = v.

• ∀k ∈ k k0 = 0.

Proof. k0 = k(0 + 0) = k0 + k0, and so by the first property 0 = l0.

• ∀u ∈ V 0u = 0.

Proof. 0u = (0 + 0)u = 0u + 0u, and so by the first property 0 = 0u.

• If k 6= 0 and ku = 0 then u = 0.

Proof. u = 1u = (k−1k)u = k−1(ku) = k−10 = 0.

• ∀k ∈ k and u ∈ V (−k)u = k(−u).

Proof. 0 = k0 = k(u + (−u)) = ku + k(−u), and 0 = 0u = (k + (−k))u = ku + (−k)u.

So, k(−u) = (−k)u.

3 Subspaces

Definition 3.1. Let V be a vector space. The subset W ⊂ V is called a subspace of V if W

itself is a vector space.

To check that W is a subspace we need to check the following properties:

1. 0 ∈ W

2. ∀v, w ∈ W v + w ∈ W

3. ∀k ∈ k ∀u ∈ W ku ∈ W

Example 3.2. Consider a vector space R2. Then its subset W = {(0, y)|y ∈ R} — set of pairs

for which the first element equals to 0, is a subspace.

We can prove it. First of all, (0, 0) ∈ W , since first element of it is 0. Moreover, let

u = (0, a) ∈ W , v = (0, b) ∈ W . Then their sum u + v = (0, a + b) ∈ W since it has zero on

the first place. Now let’s multiply any vector u = (0, a) ∈ W by any number k: ku = (0, ka),

and it belongs to W , since it has 0 on the first place. So, this is a subspace.
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Example 3.3. Consider a vector space R2. Then its subset W = {(1, y)|y ∈ R} — set of pairs

for which the first element equals to 1, is NOT a subspace.

Here the first property is not satisfied — (0, 0) doesn’t belong to W . Other properties are

not satisfied as well: (1, a) ∈ W , (1, b) ∈ W , but their sum (2, a+ b) 6∈ W , since it has 2 on the

first place.

Example 3.4. Consider a vector space R2. Then its subset W = {(x, y)|x, y ∈ R, x = y} —

set of pairs for which the first element is equal to the second element (geometrically, it is a line

on the plane), is a subspace.

-
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Let’s check it. First of all, if a = (a, a) ∈ W , and b = (b, b) ∈ W then a+b = (a+b, a+b) ∈
W . Than, (0, 0) ∈ W . Moreover, for each k ∈ R we have k(a, a) = (ka, ka) ∈ W . So, this is a

subspace.

One can prove that any line on the plane R2 which goes through the origin is a subspace.

Moreover, any plane in the space R3 which contains the origin (0, 0, 0) is a subspace.

Example 3.5. Consider a vector space R2. Then its subset W = {(x, x2)|x ∈ R} — set of

pairs for which the second element is equal to the square of the first element is NOT a subspace.

Let’s prove it. First of all, if (0, 0) = (0, 02) ∈ W . Now let’s consider 2 elements of this

set — (1, 1) ∈ W and (2, 4) ∈ W . Their sum (3, 5) doesn’t belong to W , since 5 6= 32. So, we

showed that there are two elements sum of which doesn’t belong to the set. So, this is not a

vector space.
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